
1
WHAT IS GRID COMPUTING?

Grid computing has emerged as a framework for supporting complex compilations

over large data sets. In general, grids enable the efficient sharing and management of

computing resources for the purpose of performing large complex tasks. In particu-

lar, grids have been defined as anything from batch schedulers to peer-to-peer (P2P)

platforms.

Grid computing has evolved in the scientific and defense communities since the

early 1990s. As with most maturing technologies, there is debate as to exactly what

grid computing is. Some make a very clear distinction between cluster computing

and grid computing. Compute clusters are defined as a dedicated group of machines

(whether they are individual machines or racks of blades) that are dedicated for a

specific purpose. Grid computing uses a process known as “cycle stealing”: grabbing

spare compute cycles on machines across a network, when available, to get a task

done.

Since both compute clusters and grids coordinate their respective resources to

perform tasks, when does a compute cluster start to become a grid? Specifically,

does a compute cluster become a grid when it is leveraged to perform operations

other than those for which it was originally intended?

THE BASICS OF GRID COMPUTING

Grid computing is an overloaded term. Depending on whom you talk to, it takes

on different meanings. Some terms may better fit your practical usage of the

3

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright # 2005 John Wiley & Sons, Inc.

technology, such as clusters. For the purposes of this discussion, however, we shall

define grid computing as follows:

Grid computing is any distributed cluster of compute resources that provides an

environment for the sharing and managing of the resource for the distribution of

tasks based on configurable service-level policies.

A grid fundamentally consists of two distinct parts, compute and data:

. Compute grid—provides the core resource and task management services for

grid computing: sharing, management, and distribution of tasks based on con-

figurable service-level policies

. Data grid—provides the data management features to enable data access, syn-

chronization, and distribution of a grid

If the proliferation of jargon is a measure of a technology’s viability and its prom-

ise to answer key issues that businesses are facing, then transformation of jargon to

standards is a measure of the longevity of the technology in its ability to answer con-

cretely those key business issues. The evolution of grid computing from jargon to

standard can be measured by a number of converging influences: history, business

dynamics, technology evolution, and external environmental pressures.

The drivers behind grid technology are remarkably similar to those that corpor-

ations are facing today: a starving business need for powerful, inexpensive, and flex-

ible compute power, and limited funds to supply it. In the early 1990s, research

facilities and universities used increasingly complex computational programs

requiring the processing power of a supercomputer without the budget to supply

it. Their answer was to create a compute environment that could leverage any

spare compute cycles on campus to perform the required calculations.

Today, grid technology has evolved to the point where it is no longer a theory but

a proven practice. It represents a viable direction for corporations to explore grid

computing as an answer to their business needs within tight financial constraints.

There are additional forces in play that will present a fundamental paradigm shift

in how computing is done. As it migrates from the hands of artistry to the realm of

engineering—via the application of tried-and-true engineering principles—comput-

ing becomes a fundamental utility in the same way that gas and electricity gener-

ation and delivery is a utility. The quality of the service will be measured by its

ability to meet the supply-and-demand curves of the producers and consumers.

Leveling the Playing Field of Buzzword Mania

There are many analogies in the development and adoption of grid computing to

those of client/server technology. Both are fundamental paradigm shifts in the

way computing is performed. As client/server technology ushered in the broad

acceptance of relational database technology, grid technology will usher in new

4 WHAT IS GRID COMPUTING?

data management paradigms to address the specific topology of the physical com-

pute grid.

To see how this is happening, it is best to untangle the concepts of data manage-

ment in grid form by drawing on a fundamental baseline that we are all familiar with.

The people who are going to use grid technology—developers, architects, and lines

of businesses—are accustomed to thinking in terms of client/server technology and
the relational data management features within a client/server paradigm. Irrespec-

tive of the compute topology—client/server, computer clusters, or a computer

grid—from the user perspective, these data management service levels need to be

consistently maintained.

In the early days of client/server technology one would attend a seminar spon-

sored by a relational database vendor, promoting relational technology in general,

and the supplier’s product in particular. The message was that the new compute para-

digm of the client/server topology required new, more flexible data management

techniques than do those currently in use. As a result, relational databases became

synonymous with client/server technology and the standard for data management.

People attending those seminars were used to writing their own disk controllers

for data storage, so popular questions centered on disk management. How fast does

your product write to and/or read from disk? How efficient are your indices? How

well does your product manage physical data positioning on the disk? The bulk of

the seminar was spent on addressing these questions, and the only discussion of

data management centered on the use of a new language called Structured Query

Language (SQL) for storage and querying of the data. If you were interested,

there were SQL training classes to attend, where only the basics of how to form a

query were taught.

Figure 1.1 illustrates the parallels of the vocabulary and fundamentals between

data management within relational databases and that within grid computing. This

comparison is useful in two aspects: (1) it relates to terms that most are already

very familiar with and (2) more importantly, it suggests that any data management

system in grid computing must provide the same levels of service quality as within

relational databases.

Figure 1.1 links a baseline of data grid vocabulary to well-known relational data-

base terms. Relational database implementations have two fundamental com-

ponents: (1) the underlying engine that manages physical resources, in this case a

disk and (2) a layer on top of that to provide all the data management features

and functionality that architects and developers would rely on for data management,

querying, arrangement of data in highly ordered structures such as tables, the ability

to transact on data, leveraging stored procedures, event triggerings, and transacting

in and out of the database with external systems. These are the management features

and functions that today are where our true interest lies. How do I manage tables/
row locking? How do I structure indices for maximum performance? Very little

attention today is given to the underlying engine.

In the same way that relational database is a generic term, so is data grid. Com-

panies will offer implementations, products of their vision of what a data grid is.

To analyze the differences between the products offered, it is possible to apply a

THE BASICS OF GRID COMPUTING 5

baseline consisting of generic term, implementation, data management, and engine.

Each implementation of a data grid will have an engine. That engine may be a meta-

data dictionary or a distributed cache. It will also handle the data management

aspects of this data grid, defining how to structure data in tables, arrays, or matrices;

how to query data; and how to transact on the data.

Depending on the exact implementation of this engine—whether it is a metadata

dictionary that routes requests to the true long-term persistent stores, or a distributed

cache that spans all computers in the grid to form one virtual space—there are

General terms

Architecture

Implementations

Relational
database

Data
grid

Oracle
Sybase

DB2
MySQL
Others

Integrasoft
Avaki

Others

Tables,

Query Language

Procedures

Locking

Indexing

Relations

Triggers

Others…

Tables, arrays, and
matrices

Query API/language
procedures

Grid-specific policies
Data region
Data affinity
Data sync
Notification

Transactional
Others….

Disk management

Bit/byte
organization

Distributed cache
or metadata

Data Management Data Management

Engines Engines

Figure 1.1. Baseline of terms and function.

6 WHAT IS GRID COMPUTING?

specific data management issues for this new topology. How to synchronize, how to

transact on the data, how to address data affinity? These are all data management

issues; issues that, no matter who the architect or application developer is, will

need to be addressed within their applications. These are the quality-of-service

(QoS) levels that are required of the data grid. If a data grid does not provide

such service, then developers will have to write down to the lowest, most fundamen-

tal level of bit and byte management.

Data grid support for true data management extends to facilitation of the adoption

and widescale acceptance of grid technology. Developers can easily transit from

client/server-based applications to a grid topology by leveraging a product that

provides the same levels of service quality that have become the standard with

relational databases.

PARADIGM SHIFT

The technology concepts behind grids had their origins in distributed computing net-

works based on Distributed Computing Environment (DCE) and Common Object

Reguest Broker Architecture (CORBA). The approach and value proposition,

however, are radically different.

DCE- and CORBA-based distributed computing applications sought to separate

client and server, and to move processing off to a server or set of servers, thereby

reducing the requirement for large clients. Grids seek to harness large blocks of

processors into a virtual pool. Once virtualized, these pools are managed by the

grid, which provides a standard set of services that address

. Security

. Data management

. Discovery

. Reliability

Heterogeneity is key, and these pools range from desktop PCs for the purpose of

AIDS and cancer research, to large servers for problems in computational physics

and biology.

Beyond the Client/Server

Traditional client/server applications are typically configured as a client process

connecting to a utility server such as a database. The client/server architecture

can be further refined as to what a server is and what a client is. Clients that process

the business logic (“fat” clients) can become “thin” clients by moving business logic

processing to a separate server process, sometimes called an application server. The

application servers would then in turn connect to the utility server (i.e., a database),

thus forming a chain: clients connecting to an application server connecting to

databases (see Figure 1.2).

PARADIGM SHIFT 7

Thus, client/server topology fundamentally is a piping of clients and appli-

cations. Operationally, for each line of business application, this implies a strict dis-

cipline of dedicated machines running the respective application and database

servers. When planning the capacity of a data center, the rule of thumb is that the

server capacity is twice that required at peak load. However, the peak load may

occur only a few times a day for short intervals. Thus, for most of the time the

machines are running far below their capacity (typically less than 30%). This

leaves vast amounts of wasted compute capacity.

The use of distributed middleware products—such as a messaging—transforms

the client/server piping topology into a “message bus” topology. Servers can now

handle “requests” via the middleware messaging bus. Clients issue requests to the

middleware, which routes the message to the appropriate the service. This is the

beginning of a distributed processing environment, the decoupling of the physical

resource to logical service. However, the capacity planning of the data centers fol-

lows the same rules as does the client/server topology, thus doing little to harness

the vast, untapped compute capacity of the servers.

Grid computing is a further evolution of distributed computing that attempts to

better utilize unused compute capacity. It enables the freedom to choose the

hardware that is best suited to run the service at a specific point in time. This

offers a better utilization of the physical resource. For example, machine A in a

client/server topology was dedicated to one service. That same machine in a grid

 Traditional
client /server topology

 Fat client with a
fundamental utility server

such as a database

Traditional
client/server topology

client with a one or multiple-
business application server

(possibly multithreaded)
connected to a fundamental utility

server such as a database

Data
server

Client

Business
application

server

Server

Client

Essentially a pipe
architecture

1 to 1 or 1 to many

Figure 1.2. Traditional client/server topology.

8 WHAT IS GRID COMPUTING?

topology can now support any service, with the limitation matching the machine’s

hardware/software provisioning to what is necessary to run a specific service.

Within a client/server environment, threading of servers allows for similar

request processing—one thread for one request—thus allowing a single-server pro-

cess to handle multiple clients at the same time. However, there is an upper limit to

the practical number of threads that can efficiently run in that single process. Within

grid technology, there is a similar concept. What would run in a thread can now be

run on the best available machine in the grid. The end result is the elimination of any

upper bound that exists in a single-machine, multithreaded process.

In a grid, a service can be further subdivided into tasks or worklets. The tasks can

now be “sprayed” across the entire grid, thus transforming a sequential process into

an n-way parallelizable event. What was a long-running process can now be com-

pleted in a fraction of the time.

As more capacity is needed to support the business, more hardware can be added to

the grid. Once a service is grid-enabled, there are no programming changes necessary

to take advantage of the additional capacity. This sets up the scenario of an infinitely

wide grid, with “worklets” simultaneously accessing resources such as a database.

What was a piping of client to server now resembles a funnel of clients trying to

reach a single resource: orders of magnitude more “clients” trying to access data

from a resource not designed for this wide-mouth funnel of requests (see Figure 1.3).

In attempting to handle large numbers of client requests efficiently, software

companies have split up the servers by sharing or “striping” the workload across

Funnel of potentially
unlimited number of

“application worklets” trying
to access a single resource

such as a database

Compute grid of machines
coordinating to complete a

task or set of tasks

Server

Figure 1.3. The grid funnel to data sources.

PARADIGM SHIFT 9

multiple server peers. This does increase the processing capacity of the servers

behind the server wall but does not address the client request/response bottleneck.
Attempting to use faster client/server technology in this way simply creates a pro-

cessing hourglass (see Figure 1.4): wide client grid, and wide server process fanout

with a bottleneck at client access to the server.

Data management in grid computing addresses the widening of the throat of the

hourglass to the width of the grid to eliminate data access bottlenecks (see Figure 1.5).

NEW TOPOLOGY

Grid computing builds on established concepts of distributed computing to create a

physical topology that is very different from that of the client/server. A computer

becomes a network of smaller machines coordinating with one another to complete

Compute grid of machines
coordinating to complete a

task or set of tasks

Server
access
point

Server
fanout

Server
fanout

Server
fanout

Some server architectures
allow for server fanout,
such as striping data

across multiple servers;
however, there is typically

a single point of access that
handles client request/

response

Figure 1.4. Grid and server hourglass.

10 WHAT IS GRID COMPUTING?

a variety of tasks—a collection of reconfigurable nodes for performing a variety of

different tasks without human intervention, in contrast to the siloed/specialized data
centers of today:

. Elasticity—Information technology (IT) spending is being tied directly to

business volume, forcing greater transparency and other benefits.

. Pervasiveness—There are a proliferation of uses of IT resources for basic needs

much like a utility (electricity, telephone, etc.).

. Defense spending—IT spending is closely controlled by the upper management

and corporate CIO/CFO.

. Moore’s law—The cost of hardware is decreased.

Each of these forces has rippling effects throughout a grid architecture, thus forcing

grid acceptance:

. Elasticity—increased emphasis on metering usage, and the utility concept

within IT. For example, one utility must support multiple functions such as

high-performance computing and Web Services.

Compute grid of machines
coordinating to complete a

task or set of tasks

Relational
database

Data grid / “Distributed
Data Management System”TM

eliminates data access
bottlenecks inherent in a
grid topology and creates
a unified view to disparate

data sources

Relational
database

Figure 1.5. Distributed data management in grid eliminates data access bottlenecks.

NEW TOPOLOGY 11

. Pervasiveness—increased commoditization of basic functions [DNS (Domain

Name System), Mail, Web, etc.].

. Defense spending—increased R&D in data integration, prediction, reliable

infrastructures (à la ARPANET).

. Moore’s law—increased emphasis on encoding more functions on chips them-

selves [i.e., Flash, PROM (programmable read-only memory), and RAM

(random access memory) in everything, and nothing else].

. Data management—how to maintain the same “user experience” in data

management and not hinder the realization of the full potential of the grid

environment.

12 WHAT IS GRID COMPUTING?

